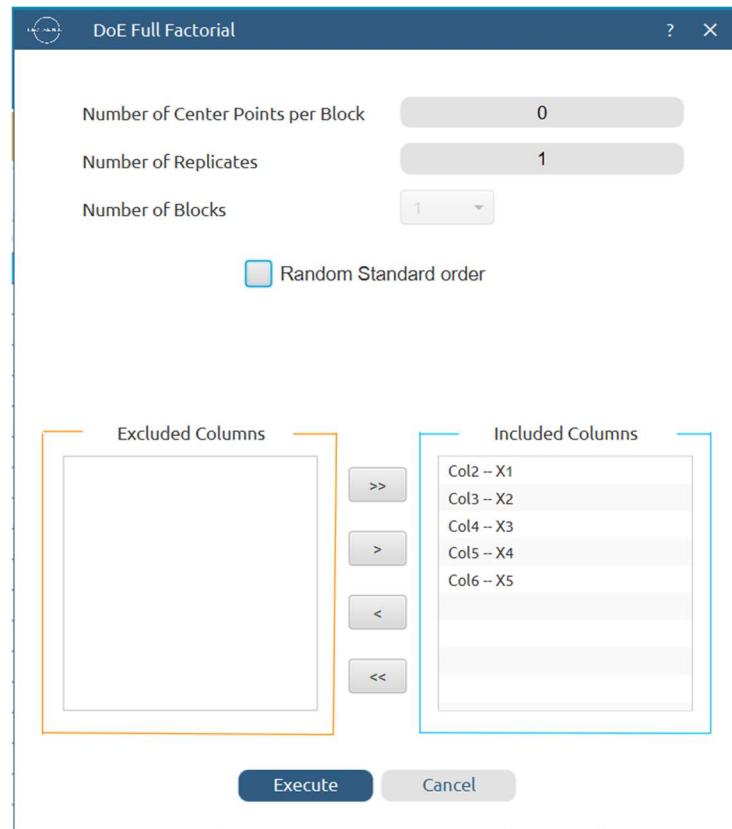




## Development of pellets for oral lysozyme delivery by using a quality by design approach

The objectives of this research paper are to identify how the critical process parameters influence the critical quality attributes of a lysozyme-containing multiparticulate dosage form, and to determine the critical points of API activity preservation. Design of experiments (DoE) methodology is implemented in order to determine the effects of the adjustable critical process parameters.

The factors (independent variables) examined are:  $X_1$  = impeller speed (rpm),  $X_2$  = liquid addition (ml/min),  $X_3$  = extrusion speed (rpm),  $X_4$  = spheronizer speed (rpm) and  $X_5$  = spheronization time (min). All the factors are continuous. The responses (dependent variables) examined are:  $Y_1$  = activity (%),  $Y_2$  = hardness (N) and  $Y_3$  = roundness. The applied DoE method is  $2^5$  full factorial design.


Isalos version used: 2.0.6

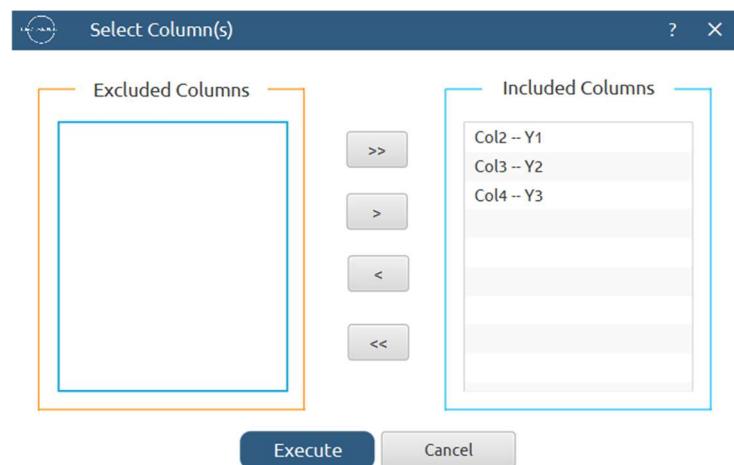
Scientific article: <https://www.sciencedirect.com/science/article/abs/pii/S0263876215004918>

### Step 1: Full Factorial Design

In the first tab named “Action” define the factors in the column headers and fill each column with the low and high levels of the corresponding factors. This tab can be renamed “Full Factorial”. Afterwards, apply the full factorial method: DOE → Factorial → Full Factorial

|             | Col1        | Col2 (I) | Col3 (I) | Col4 (I) | Col5 (I) | Col6 (I) |
|-------------|-------------|----------|----------|----------|----------|----------|
| User Header | User Row ID | X1       | X2       | X3       | X4       | X5       |
| 1           |             | 500      | 5        | 70       | 1000     | 15       |
| 2           |             | 1500     | 10       | 120      | 2000     | 30       |




## Results (right spreadsheet):

|             | Col1        | Col2 (I)       | Col3 (S)     | Col4 (S)         | Col5 (S)     | Col6 (D) | Col7 (D) | Col8 (D) | Col9 (D) | Col10 (D) |
|-------------|-------------|----------------|--------------|------------------|--------------|----------|----------|----------|----------|-----------|
| User Header | User Row ID | Standard Order | Block Number | Replicate Number | Point Type   | X1       | X2       | X3       | X4       | X5        |
| 1           |             | 1              | Block: 1     | Replicate: 1     | Design Point | 500.0    | 5.0      | 70.0     | 1000.0   | 15.0      |
| 2           |             | 2              | Block: 1     | Replicate: 1     | Design Point | 1500.0   | 5.0      | 70.0     | 1000.0   | 15.0      |
| 3           |             | 3              | Block: 1     | Replicate: 1     | Design Point | 500.0    | 10.0     | 70.0     | 1000.0   | 15.0      |
| 4           |             | 4              | Block: 1     | Replicate: 1     | Design Point | 1500.0   | 10.0     | 70.0     | 1000.0   | 15.0      |
| 5           |             | 5              | Block: 1     | Replicate: 1     | Design Point | 500.0    | 5.0      | 120.0    | 1000.0   | 15.0      |
| 6           |             | 6              | Block: 1     | Replicate: 1     | Design Point | 1500.0   | 5.0      | 120.0    | 1000.0   | 15.0      |
| 7           |             | 7              | Block: 1     | Replicate: 1     | Design Point | 500.0    | 10.0     | 120.0    | 1000.0   | 15.0      |
| 8           |             | 8              | Block: 1     | Replicate: 1     | Design Point | 1500.0   | 10.0     | 120.0    | 1000.0   | 15.0      |
| 9           |             | 9              | Block: 1     | Replicate: 1     | Design Point | 500.0    | 5.0      | 70.0     | 2000.0   | 15.0      |
| 10          |             | 10             | Block: 1     | Replicate: 1     | Design Point | 1500.0   | 5.0      | 70.0     | 2000.0   | 15.0      |
| 11          |             | 11             | Block: 1     | Replicate: 1     | Design Point | 500.0    | 10.0     | 70.0     | 2000.0   | 15.0      |
| 12          |             | 12             | Block: 1     | Replicate: 1     | Design Point | 1500.0   | 10.0     | 70.0     | 2000.0   | 15.0      |
| 13          |             | 13             | Block: 1     | Replicate: 1     | Design Point | 500.0    | 5.0      | 120.0    | 2000.0   | 15.0      |
| 14          |             | 14             | Block: 1     | Replicate: 1     | Design Point | 1500.0   | 5.0      | 120.0    | 2000.0   | 15.0      |
| 15          |             | 15             | Block: 1     | Replicate: 1     | Design Point | 500.0    | 10.0     | 120.0    | 2000.0   | 15.0      |
| 16          |             | 16             | Block: 1     | Replicate: 1     | Design Point | 1500.0   | 10.0     | 120.0    | 2000.0   | 15.0      |
| 17          |             | 17             | Block: 1     | Replicate: 1     | Design Point | 500.0    | 5.0      | 70.0     | 1000.0   | 30.0      |
| 18          |             | 18             | Block: 1     | Replicate: 1     | Design Point | 1500.0   | 5.0      | 70.0     | 1000.0   | 30.0      |
| 19          |             | 19             | Block: 1     | Replicate: 1     | Design Point | 500.0    | 10.0     | 70.0     | 1000.0   | 30.0      |
| 20          |             | 20             | Block: 1     | Replicate: 1     | Design Point | 1500.0   | 10.0     | 70.0     | 1000.0   | 30.0      |
| 21          |             | 21             | Block: 1     | Replicate: 1     | Design Point | 500.0    | 5.0      | 120.0    | 1000.0   | 30.0      |

## Step 2: Definition of response variables

Create a new tab named “Responses” and define the responses in the column headers. Fill each column with the values of the corresponding responses that were observed and make sure the values follow the order of the experiments as given by the full factorial method. Then, select all columns to be transferred to the right spreadsheet: [Data Transformation → Data Manipulation → Select Column\(s\)](#)

|             | Col1        | Col2 (D) | Col3 (D) | Col4 (D) |
|-------------|-------------|----------|----------|----------|
| User Header | User Row ID | Y1       | Y2       | Y3       |
| 1           |             | 68.39378 | 9.18     | 1.27     |
| 2           |             | 69.43005 | 4.99     | 1.37     |
| 3           |             | 96.89119 | 2.42     | 1.3      |
| 4           |             | 70.46632 | 5.29     | 1.4      |
| 5           |             | 71.50259 | 5.94     | 1.2      |
| 6           |             | 79.79275 | 4.45     | 1.39     |
| 7           |             | 84.45596 | 5.71     | 1.34     |
| 8           |             | 67.87565 | 8.87     | 1.38     |
| 9           |             | 70.46632 | 6.39     | 1.16     |
| 10          |             | 75.12953 | 3.87     | 1.27     |
| 11          |             | 71.50259 | 3.01     | 1.22     |
| 12          |             | 83.93782 | 5.36     | 1.23     |
| 13          |             | 77.72021 | 3.86     | 1.17     |
| 14          |             | 81.34715 | 3.48     | 1.28     |
| 15          |             | 65.80311 | 3.14     | 1.34     |
| 16          |             | 47.15026 | 6.57     | 1.27     |
| 17          |             | 72.53886 | 6.39     | 1.25     |
| 18          |             | 62.6943  | 4.79     | 1.4      |
| 19          |             | 86.5285  | 2.55     | 1.2      |
| 20          |             | 56.47668 | 7.71     | 1.39     |
| 21          |             | 67.87565 | 6.82     | 1.22     |



## Step 3: Data isolation

Create a new tab named “Data” and import the results from the “Full Factorial” and “Responses” spreadsheets by right clicking on the left spreadsheet. Then, select only the factors and responses columns to be transferred to the right spreadsheet: Data Transformation → Data Manipulation → Select Column(s)

|             | Col1        | Col2 | Col3 | Col4 | Col5 | Col6 |
|-------------|-------------|------|------|------|------|------|
| User Header | User Row ID |      |      |      |      |      |
| 1           |             |      |      |      |      |      |
| 2           |             |      |      |      |      |      |
| 3           |             |      |      |      |      |      |
| 4           |             |      |      |      |      |      |
| 5           |             |      |      |      |      |      |
| 6           |             |      |      |      |      |      |
| 7           |             |      |      |      |      |      |
| 8           |             |      |      |      |      |      |
| 9           |             |      |      |      |      |      |
| 10          |             |      |      |      |      |      |

Multiple Spreadsheet Joiner

Join Configuration Steps

Step 1: Full factorial  $\bowtie$  Responses (Concatenation)

Join Type

Concatenation  Left Join  Right Join  Inner Join  Full Outer Join

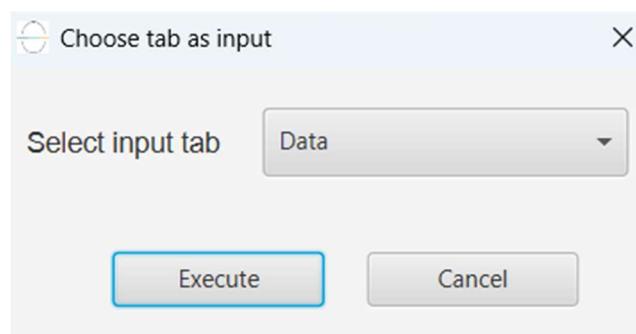
Left Spreadsheet: Full factorial

Right Spreadsheet: Responses

Join Column

Common header name  Different header names

Add Delete Execute Cancel

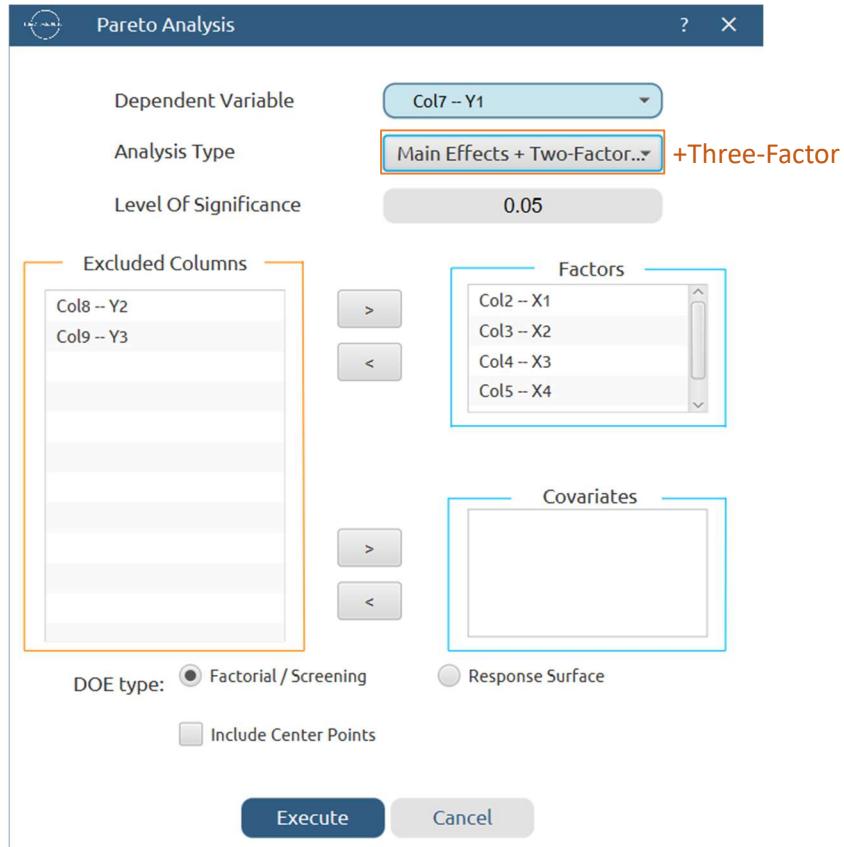

Results:

|             | Col1        | Col2 (D) | Col3 (D) | Col4 (D) | Col5 (D) | Col6 (D) | Col7 (D) | Col8 (D) | Col9 (D) |
|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|
| User Header | User Row ID | X1       | X2       | X3       | X4       | X5       | Y1       | Y2       | Y3       |
| 1           |             | 500.0    | 5.0      | 70.0     | 1000.0   | 15.0     | 68.39378 | 9.18     | 1.27     |
| 2           |             | 1500.0   | 5.0      | 70.0     | 1000.0   | 15.0     | 69.43005 | 4.99     | 1.37     |
| 3           |             | 500.0    | 10.0     | 70.0     | 1000.0   | 15.0     | 96.89119 | 2.42     | 1.3      |
| 4           |             | 1500.0   | 10.0     | 70.0     | 1000.0   | 15.0     | 70.46632 | 5.29     | 1.4      |
| 5           |             | 500.0    | 5.0      | 120.0    | 1000.0   | 15.0     | 71.50259 | 5.94     | 1.2      |
| 6           |             | 1500.0   | 5.0      | 120.0    | 1000.0   | 15.0     | 79.79275 | 4.45     | 1.39     |
| 7           |             | 500.0    | 10.0     | 120.0    | 1000.0   | 15.0     | 84.45596 | 5.71     | 1.34     |
| 8           |             | 1500.0   | 10.0     | 120.0    | 1000.0   | 15.0     | 67.87565 | 8.87     | 1.38     |
| 9           |             | 500.0    | 5.0      | 70.0     | 2000.0   | 15.0     | 70.46632 | 6.39     | 1.16     |
| 10          |             | 1500.0   | 5.0      | 70.0     | 2000.0   | 15.0     | 75.12953 | 3.87     | 1.27     |
| 11          |             | 500.0    | 10.0     | 70.0     | 2000.0   | 15.0     | 71.50259 | 3.01     | 1.22     |
| 12          |             | 1500.0   | 10.0     | 70.0     | 2000.0   | 15.0     | 83.93782 | 5.36     | 1.23     |
| 13          |             | 500.0    | 5.0      | 120.0    | 2000.0   | 15.0     | 77.72021 | 3.86     | 1.17     |
| 14          |             | 1500.0   | 5.0      | 120.0    | 2000.0   | 15.0     | 81.34715 | 3.48     | 1.28     |
| 15          |             | 500.0    | 10.0     | 120.0    | 2000.0   | 15.0     | 65.80311 | 3.14     | 1.34     |
| 16          |             | 1500.0   | 10.0     | 120.0    | 2000.0   | 15.0     | 47.15026 | 6.57     | 1.27     |
| 17          |             | 500.0    | 5.0      | 70.0     | 1000.0   | 30.0     | 72.53886 | 6.39     | 1.25     |
| 18          |             | 1500.0   | 5.0      | 70.0     | 1000.0   | 30.0     | 62.6943  | 4.79     | 1.4      |
| 19          |             | 500.0    | 10.0     | 70.0     | 1000.0   | 30.0     | 86.5285  | 2.55     | 1.2      |
| 20          |             | 1500.0   | 10.0     | 70.0     | 1000.0   | 30.0     | 56.47668 | 7.71     | 1.39     |
| 21          |             | 500.0    | 5.0      | 120.0    | 1000.0   | 30.0     | 67.87565 | 6.82     | 1.22     |
| 22          |             | 1500.0   | 5.0      | 120.0    | 1000.0   | 30.0     | 72.53886 | 3.48     | 1.42     |
| 23          |             | 500.0    | 10.0     | 120.0    | 1000.0   | 30.0     | 78.75648 | 2.42     | 1.29     |
| 24          |             | 1500.0   | 10.0     | 120.0    | 1000.0   | 30.0     | 74.09326 | 4.9      | 1.4      |
| 25          |             | 500.0    | 5.0      | 70.0     | 2000.0   | 30.0     | 75.64767 | 6.48     | 1.14     |
| 26          |             | 1500.0   | 5.0      | 70.0     | 2000.0   | 30.0     | 77.20207 | 3.27     | 1.29     |
| 27          |             | 500.0    | 10.0     | 70.0     | 2000.0   | 30.0     | 94.81865 | 3.16     | 1.27     |
| 28          |             | 1500.0   | 10.0     | 70.0     | 2000.0   | 30.0     | 50.7772  | 6        | 1.29     |
| 29          |             | 500.0    | 5.0      | 120.0    | 2000.0   | 30.0     | 80.82902 | 4.24     | 1.31     |
| 30          |             | 1500.0   | 5.0      | 120.0    | 2000.0   | 30.0     | 84.97409 | 5.41     | 1.39     |
| 31          |             | 500.0    | 10.0     | 120.0    | 2000.0   | 30.0     | 62.6943  | 3.78     | 1.32     |
| 32          |             | 1500.0   | 10.0     | 120.0    | 2000.0   | 30.0     | 66.83938 | 7.18     | 1.35     |

## Step 4: Normalization

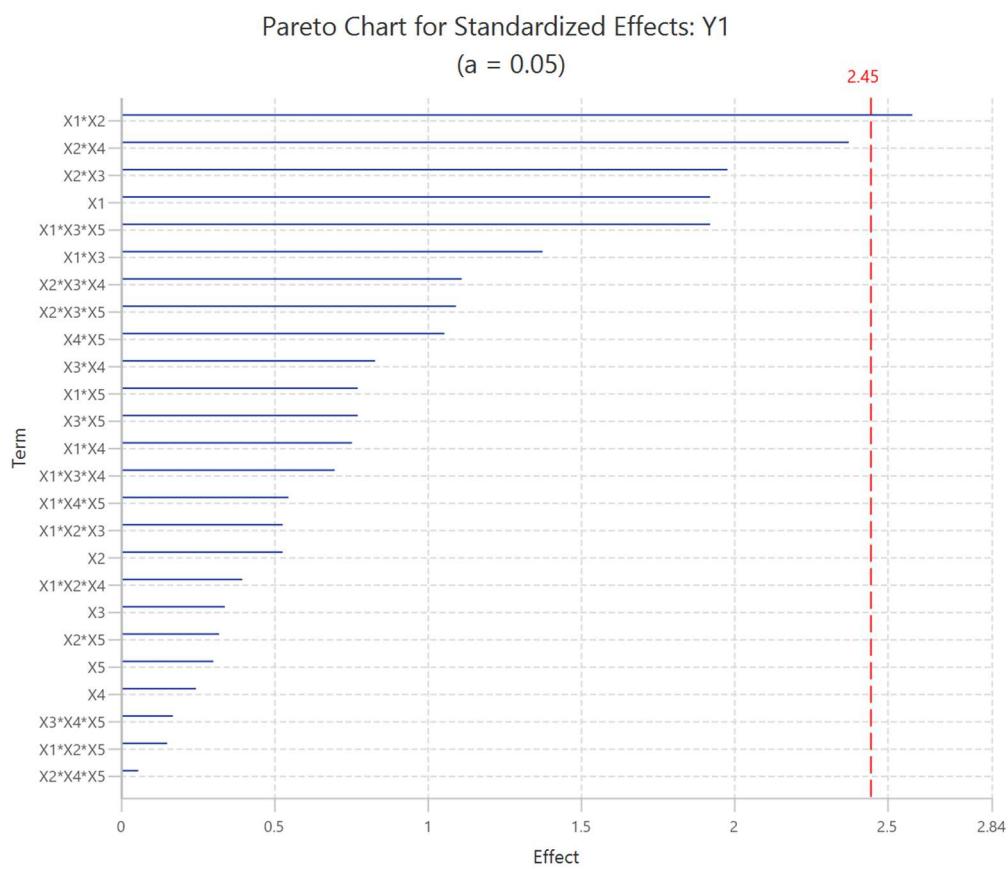
Create a new tab named “Normalized data” and import the results from the “Data” spreadsheet. Afterwards, normalize the factor columns to take values in the range [-1, 1]: [Data Transformation → Normalizers → Min-Max](#)

|             | Col1        | Col2 | Col3 | Col4 | Col5 | Col6 |
|-------------|-------------|------|------|------|------|------|
| User Header | User Row ID |      |      |      |      |      |
| 1           |             |      |      |      |      |      |
| 2           |             |      |      |      |      |      |
| 3           |             |      |      |      |      |      |
| 4           |             |      |      |      |      |      |
| 5           |             |      |      |      |      |      |
| 6           |             |      |      |      |      |      |
| 7           |             |      |      |      |      |      |
| 8           |             |      |      |      |      |      |
| 9           |             |      |      |      |      |      |
| 10          |             |      |      |      |      |      |



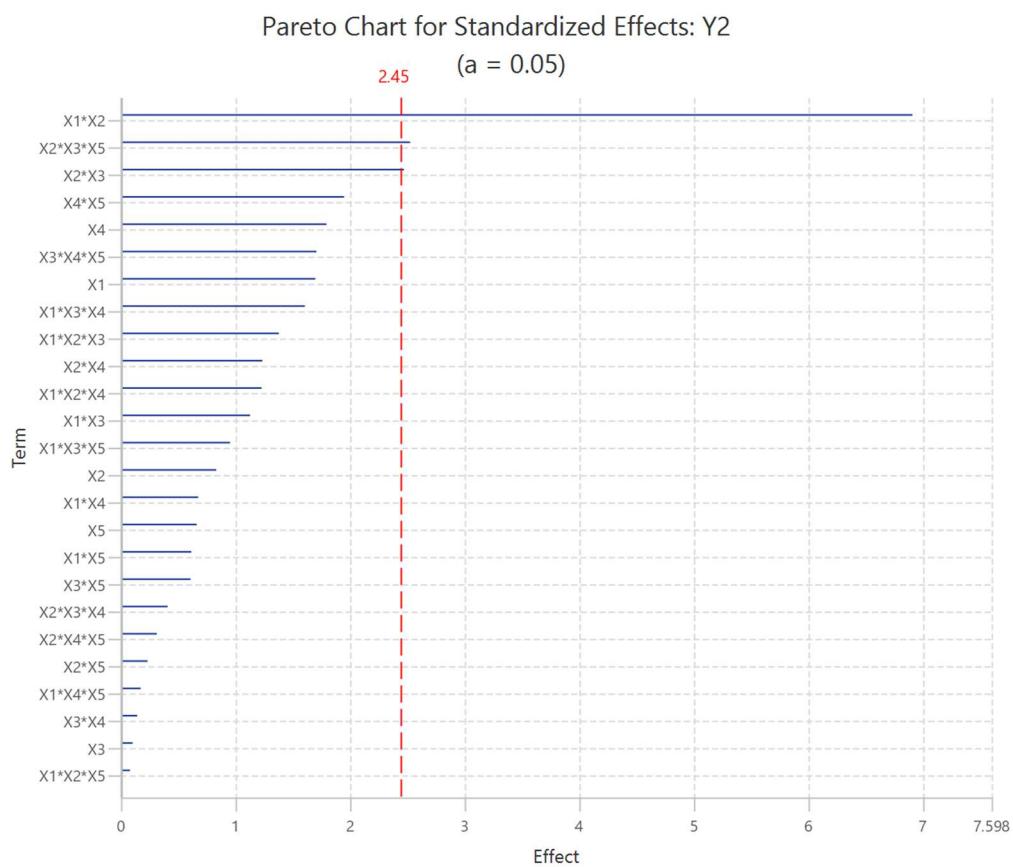

Results:

|             | Col1        | Col2 (D) | Col3 (D) | Col4 (D) | Col5 (D) | Col6 (D) | Col7 (D) | Col8 (D) | Col9 (D) |
|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|
| User Header | User Row ID | X1       | X2       | X3       | X4       | X5       | Y1       | Y2       | Y3       |
| 1           |             | -1.0     | -1.0     | -1.0     | -1.0     | -1.0     | 68.39378 | 9.18     | 1.27     |
| 2           |             | 1.0      | -1.0     | -1.0     | -1.0     | -1.0     | 69.43005 | 4.99     | 1.37     |
| 3           |             | -1.0     | 1.0      | -1.0     | -1.0     | -1.0     | 96.89119 | 2.42     | 1.3      |
| 4           |             | 1.0      | 1.0      | -1.0     | -1.0     | -1.0     | 70.46632 | 5.29     | 1.4      |
| 5           |             | -1.0     | -1.0     | 1.0      | -1.0     | -1.0     | 71.50259 | 5.94     | 1.2      |
| 6           |             | 1.0      | -1.0     | 1.0      | -1.0     | -1.0     | 79.79275 | 4.45     | 1.39     |
| 7           |             | -1.0     | 1.0      | 1.0      | -1.0     | -1.0     | 84.45596 | 5.71     | 1.34     |
| 8           |             | 1.0      | 1.0      | 1.0      | -1.0     | -1.0     | 67.87565 | 8.87     | 1.38     |
| 9           |             | -1.0     | -1.0     | -1.0     | 1.0      | -1.0     | 70.46632 | 6.39     | 1.16     |
| 10          |             | 1.0      | -1.0     | -1.0     | 1.0      | -1.0     | 75.12953 | 3.87     | 1.27     |
| 11          |             | -1.0     | 1.0      | -1.0     | 1.0      | -1.0     | 71.50259 | 3.01     | 1.22     |
| 12          |             | 1.0      | 1.0      | -1.0     | 1.0      | -1.0     | 83.93782 | 5.36     | 1.23     |
| 13          |             | -1.0     | -1.0     | 1.0      | 1.0      | -1.0     | 77.72021 | 3.86     | 1.17     |
| 14          |             | 1.0      | -1.0     | 1.0      | 1.0      | -1.0     | 81.34715 | 3.48     | 1.28     |
| 15          |             | -1.0     | 1.0      | 1.0      | 1.0      | -1.0     | 65.80311 | 3.14     | 1.34     |
| 16          |             | 1.0      | 1.0      | 1.0      | 1.0      | -1.0     | 47.15026 | 6.57     | 1.27     |
| 17          |             | -1.0     | -1.0     | -1.0     | -1.0     | 1.0      | 72.53886 | 6.39     | 1.25     |
| 18          |             | 1.0      | -1.0     | -1.0     | -1.0     | 1.0      | 62.6943  | 4.79     | 1.4      |
| 19          |             | -1.0     | 1.0      | -1.0     | -1.0     | 1.0      | 86.5285  | 2.55     | 1.2      |
| 20          |             | 1.0      | 1.0      | -1.0     | -1.0     | 1.0      | 56.47668 | 7.71     | 1.39     |
| 21          |             | -1.0     | -1.0     | 1.0      | -1.0     | 1.0      | 67.87565 | 6.82     | 1.22     |
| 22          |             | 1.0      | -1.0     | 1.0      | -1.0     | 1.0      | 72.53886 | 3.48     | 1.42     |
| 23          |             | -1.0     | 1.0      | 1.0      | -1.0     | 1.0      | 78.75648 | 2.42     | 1.29     |
| 24          |             | 1.0      | 1.0      | 1.0      | -1.0     | 1.0      | 74.09326 | 4.9      | 1.4      |
| 25          |             | -1.0     | -1.0     | -1.0     | 1.0      | 1.0      | 75.64767 | 6.48     | 1.14     |
| 26          |             | 1.0      | -1.0     | -1.0     | 1.0      | 1.0      | 77.20207 | 3.27     | 1.29     |
| 27          |             | -1.0     | 1.0      | -1.0     | 1.0      | 1.0      | 94.81865 | 3.16     | 1.27     |
| 28          |             | 1.0      | 1.0      | -1.0     | 1.0      | 1.0      | 50.7772  | 6.0      | 1.29     |
| 29          |             | -1.0     | -1.0     | 1.0      | 1.0      | 1.0      | 80.82902 | 4.24     | 1.31     |
| 30          |             | 1.0      | -1.0     | 1.0      | 1.0      | 1.0      | 84.97409 | 5.41     | 1.39     |
| 31          |             | -1.0     | 1.0      | 1.0      | 1.0      | 1.0      | 62.6943  | 3.78     | 1.32     |
| 32          |             | 1.0      | 1.0      | 1.0      | 1.0      | 1.0      | 66.83938 | 7.18     | 1.35     |


## Step 5: Pareto analysis

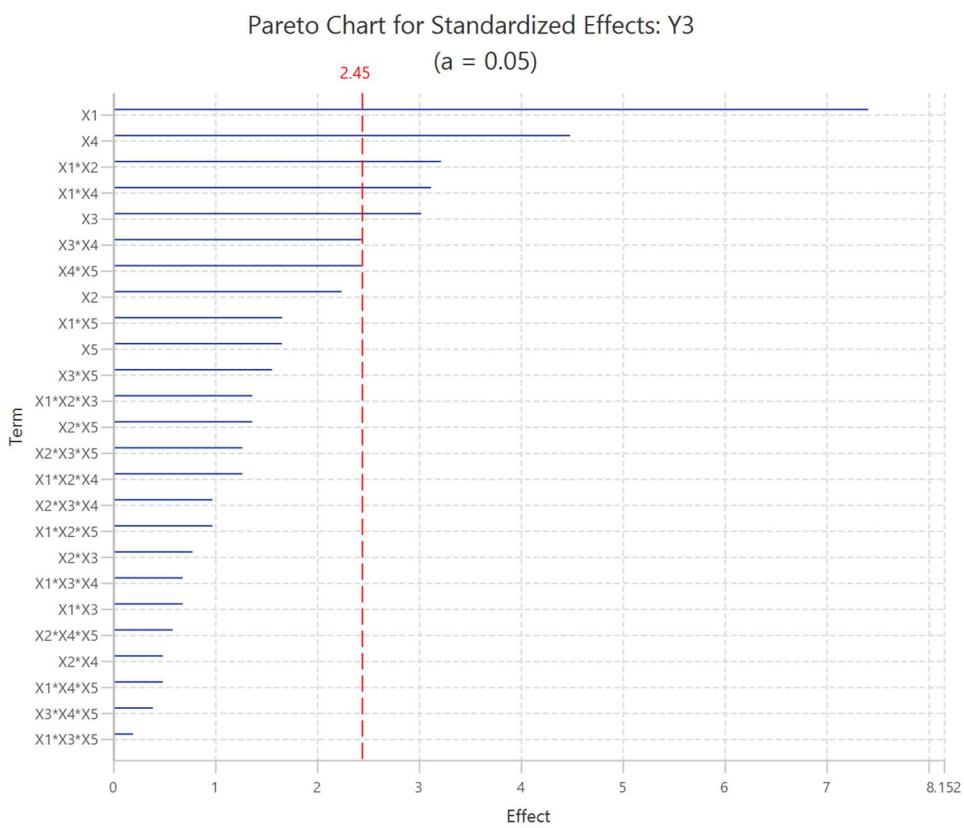
Create a new tab named “Pareto Analysis – Y1” and import the results either from the spreadsheet “Data” or “Normalized data”. Then, conduct pareto analysis for the first response variable, Y<sub>1</sub>: DOE → Post DoE Analysis → Pareto Analysis




Results:

|             | Col1        | Col2 (S)             | Col3 (S)             |
|-------------|-------------|----------------------|----------------------|
| User Header | User Row ID | Pareto Analysis of : | Standardized Effects |
| 1           |             | Variable             | Effect               |
| 2           |             | X1*X2                | 2.5818438            |
| 3           |             | X2*X4                | 2.3745425            |
| 4           |             | X2*X3                | 1.9787854            |
| 5           |             | X1                   | 1.9222492            |
| 6           |             | X1*X3*X5             | 1.9222484            |
| 7           |             | X1*X3                | 1.3757270            |
| 8           |             | X2*X3*X4             | 1.1118888            |
| 9           |             | X2*X3*X5             | 1.0930434            |
| 10          |             | X4*X5                | 1.0553522            |
| 11          |             | X3*X4                | 0.8292052            |
| 12          |             | X1*X5                | 0.7726690            |
| 13          |             | X3*X5                | 0.7726683            |
| 14          |             | X1*X4                | 0.7538229            |
| 15          |             | X1*X3*X4             | 0.6972863            |
| 16          |             | X1*X4*X5             | 0.5465213            |
| 17          |             | X1*X2*X3             | 0.5276762            |
| 18          |             | X2                   | 0.5276762            |
| 19          |             | X1*X2*X4             | 0.3957577            |
| 20          |             | X3                   | 0.3392196            |
| 21          |             | X2*X5                | 0.3203750            |
| 22          |             | X5                   | 0.3015292            |
| 23          |             | X4                   | 0.2449926            |
| 24          |             | X3*X4*X5             | 0.1696103            |
| 25          |             | X1*X2*X5             | 0.1507645            |
| 26          |             | X2*X4*X5             | 0.0565368            |
| 27          |             | Significance Value   | 2.4469119            |



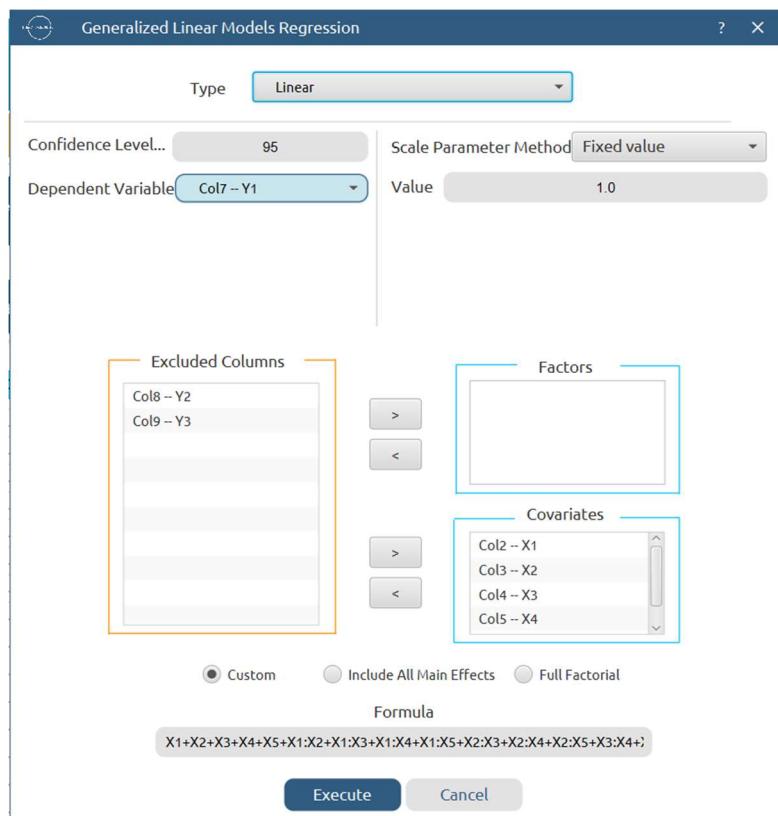

Repeat this step for the rest of the response variables. Results,  $Y_2$ :

|             | Col1        | Col2 (S)                  | Col3 (S)             |
|-------------|-------------|---------------------------|----------------------|
| User Header | User Row ID | Pareto Analysis of :      | Standardized Effects |
| 1           |             | Variable                  | Effect               |
| 2           |             | $X_1 \cdot X_2$           | 6.9072096            |
| 3           |             | $X_2 \cdot X_3 \cdot X_5$ | 2.5234339            |
| 4           |             | $X_2 \cdot X_3$           | 2.4698507            |
| 5           |             | $X_4 \cdot X_5$           | 1.9474145            |
| 6           |             | $X_4$                     | 1.7933628            |
| 7           |             | $X_3 \cdot X_4 \cdot X_5$ | 1.7062901            |
| 8           |             | $X_1$                     | 1.6962432            |
| 9           |             | $X_1 \cdot X_3 \cdot X_4$ | 1.6058216            |
| 10          |             | $X_1 \cdot X_2 \cdot X_3$ | 1.3780930            |
| 11          |             | $X_2 \cdot X_4$           | 1.2340881            |
| 12          |             | $X_1 \cdot X_2 \cdot X_4$ | 1.2273902            |
| 13          |             | $X_1 \cdot X_3$           | 1.1269217            |
| 14          |             | $X_1 \cdot X_3 \cdot X_5$ | 0.9527763            |
| 15          |             | $X_2$                     | 0.8322141            |
| 16          |             | $X_1 \cdot X_4$           | 0.6748134            |
| 17          |             | $X_5$                     | 0.6614176            |
| 18          |             | $X_1 \cdot X_5$           | 0.6145323            |
| 19          |             | $X_3 \cdot X_5$           | 0.6078344            |
| 20          |             | $X_2 \cdot X_3 \cdot X_4$ | 0.4068974            |
| 21          |             | $X_2 \cdot X_4 \cdot X_5$ | 0.3131268            |
| 22          |             | $X_2 \cdot X_5$           | 0.2327520            |
| 23          |             | $X_1 \cdot X_4 \cdot X_5$ | 0.1724709            |
| 24          |             | $X_3 \cdot X_4$           | 0.1423304            |
| 25          |             | $X_3$                     | 0.1021430            |
| 26          |             | $X_1 \cdot X_2 \cdot X_5$ | 0.0787003            |
| 27          |             | Significance Value        | 2.4469119            |



Results, Y<sub>3</sub>:

|             | Col1        | Col2 (S)             | Col3 (S)             |
|-------------|-------------|----------------------|----------------------|
| User Header | User Row ID | Pareto Analysis of : | Standardized Effects |
| 1           |             | Variable             | Effect               |
| 2           |             | X1                   | 7.4109612            |
| 3           |             | X4                   | 4.4855818            |
| 4           |             | X1*X2                | 3.2179174            |
| 5           |             | X1*X4                | 3.1204047            |
| 6           |             | X3                   | 3.0228921            |
| 7           |             | X3*X4                | 2.4378162            |
| 8           |             | X4*X5                | 2.4378162            |
| 9           |             | X2                   | 2.2427909            |
| 10          |             | X1*X5                | 1.6577150            |
| 11          |             | X5                   | 1.6577150            |
| 12          |             | X3*X5                | 1.5602024            |
| 13          |             | X1*X2*X3             | 1.3651771            |
| 14          |             | X2*X5                | 1.3651771            |
| 15          |             | X2*X3*X5             | 1.2676644            |
| 16          |             | X1*X2*X4             | 1.2676644            |
| 17          |             | X2*X3*X4             | 0.9751265            |
| 18          |             | X1*X2*X5             | 0.9751265            |
| 19          |             | X2*X3                | 0.7801012            |
| 20          |             | X1*X3*X4             | 0.6825885            |
| 21          |             | X1*X3                | 0.6825885            |
| 22          |             | X2*X4*X5             | 0.5850759            |
| 23          |             | X2*X4                | 0.4875632            |
| 24          |             | X1*X4*X5             | 0.4875632            |
| 25          |             | X3*X4*X5             | 0.3900506            |
| 26          |             | X1*X3*X5             | 0.1950253            |
| 27          |             | Significance Value   | 2.4469119            |




## Step 6: Regression

The goal here is to produce a regression equation that includes main effects, two-factor and three-factor interactions for  $Y_1$ :

$$Y = b_0 + b_1X_1 + b_2X_2 + b_3X_3 + b_4X_4 + b_5X_5 + b_{12}X_1X_2 + b_{13}X_1X_3 + b_{14}X_1X_4 + b_{15}X_1X_5 + b_{23}X_2X_3 + b_{24}X_2X_4 + b_{25}X_2X_5 + b_{34}X_3X_4 + b_{35}X_3X_5 + b_{45}X_4X_5 + b_{123}X_1X_2X_3 + b_{124}X_1X_2X_4 + b_{125}X_1X_2X_5 + b_{134}X_1X_3X_4 + b_{135}X_1X_3X_5 + b_{145}X_1X_4X_5 + b_{234}X_2X_3X_4 + b_{235}X_2X_3X_5 + b_{245}X_2X_4X_5 + b_{345}X_3X_4X_5$$

Create a new tab named “Regression –  $Y_1$ ” and import the results from the spreadsheet “Normalized data”. Afterwards, fit a generalized linear model to the data: Analytics → Regression → Statistical fitting → Generalized Linear Models



## Results:

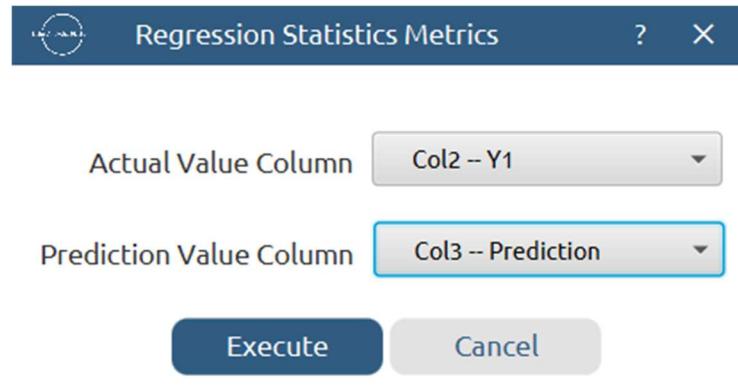
| User Header | Col1     | Col2 (D)   | Col3 (D) |                 |  |
|-------------|----------|------------|----------|-----------------|--|
| User Row ID | Y1       | Prediction |          | Goodness of Fit |  |
| 1           | 68.39378 | 67.8108769 |          |                 |  |
| 2           | 69.43005 | 70.4015537 |          |                 |  |
| 3           | 96.89119 | 93.7176162 |          |                 |  |
| 4           | 70.46632 | 73.2512931 |          |                 |  |
| 5           | 71.50259 | 75.4533675 |          |                 |  |
| 6           | 79.79275 | 75.4533719 |          |                 |  |
| 7           | 84.45596 | 84.2616594 |          |                 |  |
| 8           | 67.87565 | 68.4585512 |          |                 |  |
| 9           | 70.46632 | 65.8031087 |          |                 |  |
| 10          | 75.12953 | 79.4041406 |          |                 |  |
| 11          | 71.50259 | 79.9222781 |          |                 |  |
| 12          | 83.93782 | 75.9067325 |          |                 |  |
| 13          | 77.72021 | 79.0155469 |          |                 |  |
| 14          | 81.34715 | 80.4404137 |          |                 |  |
| 15          | 65.80311 | 60.7512962 |          |                 |  |
| 16          | 47.15026 | 51.8134731 |          |                 |  |
| 17          | 72.53886 | 72.9922288 |          |                 |  |
| 18          | 62.6943  | 61.8523306 |          |                 |  |
| 19          | 86.5285  | 89.8316081 |          |                 |  |
| 20          | 56.47668 | 53.5621725 |          |                 |  |
| 21          | 67.87565 | 64.0544069 |          |                 |  |
| 22          | 72.53886 | 76.7487037 |          |                 |  |
| 23          | 78.75648 | 78.8212462 |          |                 |  |
| 24          | 74.09326 | 73.6398931 |          |                 |  |
| 25          | 75.64767 | 80.4404156 |          |                 |  |
| 26          | 77.20207 | 72.797925  |          |                 |  |
| 27          | 94.81865 | 86.2694275 |          |                 |  |
| 28          | 50.7772  | 58.9378219 |          |                 |  |
| 29          | 80.82902 | 79.4041488 |          |                 |  |
| 30          | 84.97409 | 86.0103606 |          |                 |  |
| 31          | 62.6943  | 67.8756481 |          |                 |  |
| 32          | 66.83938 | 62.0466325 |          |                 |  |

| Parameter Estimates |             |            |            |            |                |    |           |
|---------------------|-------------|------------|------------|------------|----------------|----|-----------|
| Variable            | Coefficient | Std. Error | Lower CI   | Upper CI   | Test Statistic | df | p-value   |
| intercept           | 73.3484453  | 0.1767767  | 73.0019694 | 73.6949213 | 172159.82175   | 1  | 0.0       |
| X1                  | -3.3031097  | 0.1767767  | -3.6495856 | -2.9566337 | 349.1370754    | 1  | 0.0       |
| X2                  | -0.9067359  | 0.1767767  | -1.2532119 | -0.5602600 | 26.3094419     | 1  | 3E-7      |
| X3                  | -0.5829003  | 0.1767767  | -0.9293763 | -0.2364244 | 10.8727288     | 1  | 0.0009759 |
| X4                  | -0.4209847  | 0.1767767  | -0.7674606 | -0.0745087 | 5.6712994      | 1  | 0.0172447 |
| X5                  | -0.5181347  | 0.1767767  | -0.8646106 | -0.1716587 | 8.5908337      | 1  | 0.0033786 |
| X1*X5               | -1.3277209  | 0.1767767  | -1.6741969 | -0.9812450 | 56.4109724     | 1  | 0E-7      |
| X1*X4               | 1.2953366   | 0.1767767  | 0.9486606  | 1.6418125  | 53.6926979     | 1  | 0E-7      |
| X2*X5               | -0.5505184  | 0.1767767  | -0.8969944 | -0.2040425 | 9.6982576      | 1  | 0.0018444 |
| X1*X3               | 2.3639897   | 0.1767767  | 2.0175137  | 2.7104656  | 178.8303118    | 1  | 0.0       |
| X2*X4               | -4.0803109  | 0.1767767  | -4.4267869 | -3.7338350 | 532.7659951    | 1  | 0.0       |
| X3*X5               | 1.3277197   | 0.1767767  | 0.9812437  | 1.6741956  | 56.4108662     | 1  | 0E-7      |
| X1*X2               | -4.4365284  | 0.1767767  | -4.7830044 | -4.0900525 | 629.8491065    | 1  | 0.0       |
| X2*X3               | -3.4002591  | 0.1767767  | -3.7467350 | -3.0537831 | 369.9763741    | 1  | 0.0       |
| X3*X4               | -1.4246703  | 0.1767767  | -1.7713463 | -1.0783944 | 64.9681730     | 1  | 0E-7      |
| X4*X5               | 1.8134716   | 0.1767767  | 1.4669956  | 2.1599475  | 105.2377315    | 1  | 0.0       |
| X2*X3*X4            | -1.9106216  | 0.1767767  | -2.2570975 | -1.5641456 | 116.8151922    | 1  | 0.0       |
| X2*X4*X5            | 0.0971503   | 0.1767767  | -0.2493256 | 0.4436263  | 0.3020219      | 1  | 0.5826177 |
| X2*X3*X5            | 1.8782384   | 0.1767767  | 1.5317625  | 2.2247144  | 112.8889481    | 1  | 0.0       |
| X1*X2*X4            | 0.6800528   | 0.1767767  | 0.3335769  | 1.0265288  | 14.7990985     | 1  | 0.0001196 |
| X1*X2*X3            | 0.9067359   | 0.1767767  | 0.5602600  | 1.2532119  | 26.3094419     | 1  | 3E-7      |
| X1*X3*X4            | -1.1981866  | 0.1767767  | -1.5446625 | -0.8517106 | 45.9408332     | 1  | 0E-7      |
| X1*X4*X5            | -0.9391184  | 0.1767767  | -1.2855944 | -0.5926425 | 28.2221901     | 1  | 1E-7      |
| X1*X2*X5            | -0.2590672  | 0.1767767  | -0.6055431 | 0.0874088  | 2.1477058      | 1  | 0.1427831 |
| X1*X3*X5            | 3.3031084   | 0.1767767  | 2.9566325  | 3.6495844  | 349.1368112    | 1  | 0.0       |
| X3*X4*X5            | 0.2914509   | 0.1767767  | -0.0550250 | 0.6379269  | 2.7181968      | 1  | 0.0992100 |

Repeat this step for the rest of the response variables. Results,  $Y_2$ :

| User Header | Col1 | Col2 (D)   | Col3 (D)  |                 |  |
|-------------|------|------------|-----------|-----------------|--|
| User Row ID | Y2   | Prediction |           | Goodness of Fit |  |
| 1           |      | 9.18       | 8.5668750 |                 |  |
| 2           |      | 4.99       | 4.9562500 |                 |  |
| 3           |      | 2.42       | 2.4625000 |                 |  |
| 4           |      | 5.29       | 5.8943750 |                 |  |
| 5           |      | 5.94       | 6.6325000 |                 |  |
| 6           |      | 4.45       | 4.404375  |                 |  |
| 7           |      | 5.71       | 5.5881250 |                 |  |
| 8           |      | 8.87       | 8.3450000 |                 |  |
| 9           |      | 6.39       | 7.0837500 |                 |  |
| 10          |      | 3.87       | 3.8231250 |                 |  |
| 11          |      | 3.01       | 2.8868750 |                 |  |
| 12          |      | 5.36       | 4.8362500 |                 |  |
| 13          |      | 3.86       | 3.0868750 |                 |  |
| 14          |      | 3.48       | 3.6062500 |                 |  |
| 15          |      | 3.14       | 3.3425000 |                 |  |
| 16          |      | 6.57       | 7.0143750 |                 |  |
| 17          |      | 6.39       | 7.0987500 |                 |  |
| 18          |      | 4.79       | 4.7281250 |                 |  |
| 19          |      | 2.55       | 2.4118750 |                 |  |
| 20          |      | 7.71       | 7.2012500 |                 |  |
| 21          |      | 6.82       | 6.0318750 |                 |  |
| 22          |      | 3.48       | 3.6212500 |                 |  |
| 23          |      | 2.42       | 2.6375000 |                 |  |
| 24          |      | 4.9        | 5.3293750 |                 |  |
| 25          |      | 6.48       | 5.6906250 |                 |  |
| 26          |      | 3.27       | 3.4125000 |                 |  |
| 27          |      | 3.16       | 3.3787500 |                 |  |
| 28          |      | 6.0        | 6.4281250 |                 |  |
| 29          |      | 4.24       | 5.1087500 |                 |  |
| 30          |      | 5.41       | 5.1881250 |                 |  |
| 31          |      | 3.78       | 3.4818750 |                 |  |
| 32          |      | 7.18       | 6.8312500 |                 |  |

| Parameter Estimates |             |            |            |            |                |    |           |
|---------------------|-------------|------------|------------|------------|----------------|----|-----------|
| Variable            | Coefficient | Std. Error | Lower CI   | Upper CI   | Test Statistic | df | p-value   |
| intercept           | 5.0346875   | 0.1767767  | 4.6882115  | 5.3811635  | 811.1385031    | 1  | 0.0       |
| X1                  | 0.3165625   | 0.1767767  | -0.0299135 | 0.6630385  | 3.2067781      | 1  | 0.0733338 |
| X2                  | -0.1553125  | 0.1767767  | -0.5017885 | 0.1911635  | 0.7719031      | 1  | 0.3796289 |
| X3                  | -0.0190625  | 0.1767767  | -0.3655385 | 0.3274135  | 0.0116281      | 1  | 0.9141275 |
| X4                  | -0.3346875  | 0.1767767  | -0.6811635 | 0.0117885  | 3.5845031      | 1  | 0.0583209 |
| X5                  | -0.1234375  | 0.1767767  | -0.4699135 | 0.2230385  | 0.4875781      | 1  | 0.4850096 |
| X1*X5               | 0.1146875   | 0.1767767  | -0.2317885 | 0.4611635  | 0.4209031      | 1  | 0.5164867 |
| X1*X4               | 0.1259375   | 0.1767767  | -0.2205385 | 0.4724135  | 0.5075281      | 1  | 0.4762109 |
| X2*X5               | -0.0434375  | 0.1767767  | -0.3899135 | 0.3030385  | 0.0603781      | 1  | 0.8058993 |
| X1*X3               | 0.2103125   | 0.1767767  | -0.1361635 | 0.5567885  | 1.4154031      | 1  | 0.2341615 |
| X2*X4               | 0.2303125   | 0.1767767  | -0.1161635 | 0.5767885  | 1.6974031      | 1  | 0.1926279 |
| X3*X5               | -0.1134375  | 0.1767767  | -0.4599135 | 0.2330385  | 0.4117781      | 1  | 0.5210684 |
| X1*X2               | 1.2890625   | 0.1767767  | 0.9425865  | 1.6355385  | 53.1738281     | 1  | 0E-7      |
| X2*X3               | 0.4609375   | 0.1767767  | 0.1144615  | 0.8074135  | 6.7988281      | 1  | 0.0091218 |
| X3*X4               | 0.0265625   | 0.1767767  | -0.3199135 | 0.3730385  | 0.0225781      | 1  | 0.8805593 |
| X4*X5               | 0.3634375   | 0.1767767  | 0.0169615  | 0.7099135  | 4.2267781      | 1  | 0.0397909 |
| X2*X3*X4            | -0.0759375  | 0.1767767  | -0.4224135 | 0.2705385  | 0.1845281      | 1  | 0.6675104 |
| X2*X4*X5            | 0.0584375   | 0.1767767  | -0.2880385 | 0.4049135  | 0.1092781      | 1  | 0.7409675 |
| X2*X3*X5            | -0.4709375  | 0.1767767  | -0.8174135 | -0.1244615 | 7.0970281      | 1  | 0.0077212 |
| X1*X2*X4            | -0.2290625  | 0.1767767  | -0.5755385 | 0.1174135  | 1.6790281      | 1  | 0.1950536 |
| X1*X2*X3            | -0.2571875  | 0.1767767  | -0.6036635 | 0.0892885  | 2.1166531      | 1  | 0.1457046 |
| X1*X3*X4            | 0.2996875   | 0.1767767  | -0.0467885 | 0.6461635  | 2.8740031      | 1  | 0.0900207 |
| X1*X4*X5            | -0.0321875  | 0.1767767  | -0.3786635 | 0.3142885  | 0.0331531      | 1  | 0.8555199 |
| X1*X2*X5            | 0.0146875   | 0.1767767  | -0.3317885 | 0.3611635  | 0.0069031      | 1  | 0.9337839 |
| X1*X3*X5            | -0.1778125  | 0.1767767  | -0.5242885 | 0.1686635  | 1.0117531      | 1  | 0.3144832 |
| X3*X4*X5            | 0.3184375   | 0.1767767  | -0.0280385 | 0.6649135  | 3.2448781      | 1  | 0.0716470 |


Results, Y<sub>3</sub>:

| User Header | Col1 | Col2 (D)   | Col3 (D)  |                                      |             |
|-------------|------|------------|-----------|--------------------------------------|-------------|
| User Row ID | Y3   | Prediction |           | Goodness of Fit                      |             |
| 1           |      | 1.27       | 1.2681250 |                                      |             |
| 2           |      | 1.37       | 1.3931250 |                                      |             |
| 3           |      | 1.3        | 1.2968750 |                                      |             |
| 4           |      | 1.4        | 1.3818750 |                                      |             |
| 5           |      | 1.2        | 1.2018750 |                                      |             |
| 6           |      | 1.39       | 1.366875  | Deviance                             | 0.0078875   |
| 7           |      | 1.34       | 1.3431250 | Scaled Deviance                      | 0.0078875   |
| 8           |      | 1.38       | 1.398125  | Pearson Chi-Square                   | 0.0078875   |
| 9           |      | 1.16       | 1.1506250 | Scaled Pearson Chi-Square            | 0.0078875   |
| 10          |      | 1.27       | 1.258125  | Log Likelihood                       | -29.4099768 |
| 11          |      | 1.22       | 1.2343750 | Akaike's Information Criterion (AIC) | 110.8199536 |
| 12          |      | 1.23       | 1.2368750 | Finite Sample Corrected AIC (AICC)   | 391.6199536 |
| 13          |      | 1.17       | 1.1793750 | Bayesian Information Criterion (BIC) | 148.9290871 |
| 14          |      | 1.28       | 1.2918750 | Consistent AIC (CAIC)                | 174.9290871 |
| 15          |      | 1.34       | 1.3256250 |                                      |             |
| 16          |      | 1.27       | 1.2631250 |                                      |             |
| 17          |      | 1.25       | 1.2343750 |                                      |             |
| 18          |      | 1.4        | 1.3943750 |                                      |             |
| 19          |      | 1.2        | 1.2206250 |                                      |             |
| 20          |      | 1.39       | 1.3906250 |                                      |             |
| 21          |      | 1.22       | 1.235625  |                                      |             |
| 22          |      | 1.42       | 1.425625  |                                      |             |
| 23          |      | 1.29       | 1.2693750 |                                      |             |
| 24          |      | 1.4        | 1.3993750 |                                      |             |
| 25          |      | 1.14       | 1.1668750 |                                      |             |
| 26          |      | 1.29       | 1.284375  |                                      |             |
| 27          |      | 1.27       | 1.238125  |                                      |             |
| 28          |      | 1.29       | 1.3006250 |                                      |             |
| 29          |      | 1.31       | 1.2831250 |                                      |             |
| 30          |      | 1.39       | 1.3956250 |                                      |             |
| 31          |      | 1.32       | 1.351875  |                                      |             |
| 32          |      | 1.35       | 1.3399750 |                                      |             |

| Parameter Estimates |             |            |            |           |                |    |           |
|---------------------|-------------|------------|------------|-----------|----------------|----|-----------|
| Variable            | Coefficient | Std. Error | Lower CI   | Upper CI  | Test Statistic | df | p-value   |
| Intercept           | 1.2975000   | 0.1767767  | 0.9510240  | 1.6439760 | 53.8722000     | 1  | 0E-7      |
| X1                  | 0.0475000   | 0.1767767  | -0.2989760 | 0.3939760 | 0.0722000      | 1  | 0.7881601 |
| X2                  | 0.0143750   | 0.1767767  | -0.3321010 | 0.3608510 | 0.0066125      | 1  | 0.9351896 |
| X3                  | 0.0193750   | 0.1767767  | -0.3271010 | 0.3658510 | 0.0120125      | 1  | 0.9127254 |
| X4                  | -0.0287500  | 0.1767767  | -0.3752260 | 0.3177260 | 0.0264500      | 1  | 0.8708062 |
| X5                  | 0.0106250   | 0.1767767  | -0.3358510 | 0.3571010 | 0.0036125      | 1  | 0.9520727 |
| X1*X5               | 0.0106250   | 0.1767767  | -0.3358510 | 0.3571010 | 0.0036125      | 1  | 0.9520727 |
| X1*X4               | -0.0200000  | 0.1767767  | -0.3664760 | 0.3264760 | 0.0128000      | 1  | 0.9099219 |
| X2*X5               | -0.0087500  | 0.1767767  | -0.3552260 | 0.3377260 | 0.0024500      | 1  | 0.9605228 |
| X1*X3               | -0.0043750  | 0.1767767  | -0.3508510 | 0.3421010 | 0.0006125      | 1  | 0.9802554 |
| X2*X4               | 0.0031250   | 0.1767767  | -0.3433510 | 0.3496010 | 0.0003125      | 1  | 0.9858960 |
| X3*X5               | 0.0100000   | 0.1767767  | -0.3364760 | 0.3564760 | 0.0032000      | 1  | 0.9548889 |
| X1*X2               | -0.0206250  | 0.1767767  | -0.3671010 | 0.3258510 | 0.0136125      | 1  | 0.9071195 |
| X2*X3               | 0.0050000   | 0.1767767  | -0.3414760 | 0.3514760 | 0.0008000      | 1  | 0.9774354 |
| X3*X4               | 0.0156250   | 0.1767767  | -0.3308510 | 0.3621010 | 0.0078125      | 1  | 0.9295680 |
| X4*X5               | 0.0156250   | 0.1767767  | -0.3308510 | 0.3621010 | 0.0078125      | 1  | 0.9295680 |
| X2*X3*X4            | -0.0062500  | 0.1767767  | -0.3527260 | 0.3402260 | 0.0012500      | 1  | 0.9717964 |
| X2*X4*X5            | 0.0037500   | 0.1767767  | -0.3427260 | 0.3502260 | 0.0004500      | 1  | 0.9830756 |
| X2*X3*X5            | -0.0081250  | 0.1767767  | -0.3546010 | 0.3383510 | 0.0021125      | 1  | 0.9633406 |
| X1*X2*X4            | -0.0081250  | 0.1767767  | -0.3546010 | 0.3383510 | 0.0021125      | 1  | 0.9633406 |
| X1*X2*X3            | -0.0087500  | 0.1767767  | -0.3552260 | 0.3377260 | 0.0024500      | 1  | 0.9605228 |
| X1*X3*X4            | -0.0043750  | 0.1767767  | -0.3508510 | 0.3421010 | 0.0006125      | 1  | 0.9802554 |
| X1*X4*X5            | -0.0031250  | 0.1767767  | -0.3496010 | 0.3433510 | 0.0003125      | 1  | 0.9858960 |
| X1*X2*X5            | 0.0062500   | 0.1767767  | -0.3402260 | 0.3527260 | 0.0012500      | 1  | 0.9717964 |
| X1*X3*X5            | -0.0012500  | 0.1767767  | -0.3477260 | 0.3452260 | 0.0005000      | 1  | 0.9943582 |
| X3*X4*X5            | 0.0025000   | 0.1767767  | -0.3439760 | 0.3489760 | 0.0002000      | 1  | 0.9887166 |

## Step 7: Regression Metrics

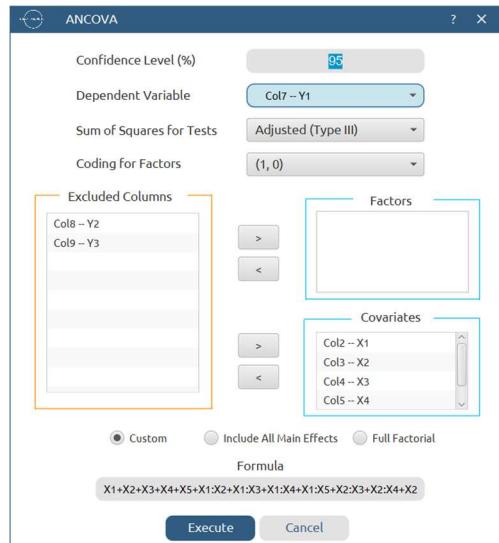
Create a tab named “Metrics – Y1” and import the results from the spreadsheet “Regression – Y1”. Then, produce the regression metrics for the Y<sub>1</sub> regression equation: Statistics → Model Metrics → Regression Metrics



Results:

|             | Col1        | Col2 (D)           | Col3 (D)                | Col4 (D)            | Col5 (D)  |
|-------------|-------------|--------------------|-------------------------|---------------------|-----------|
| User Header | User Row ID | Mean Squared Error | Root Mean Squared Error | Mean Absolute Error | R Squared |
| 1           |             | 17.7164979         | 4.2090970               | 3.3840673           | 0.8477895 |

Repeat this step for the rest of the response variables. Results, Y<sub>2</sub>:


|             | Col1        | Col2 (D)           | Col3 (D)                | Col4 (D)            | Col5 (D)  |
|-------------|-------------|--------------------|-------------------------|---------------------|-----------|
| User Header | User Row ID | Mean Squared Error | Root Mean Squared Error | Mean Absolute Error | R Squared |
| 1           |             | 0.2089748          | 0.4571376               | 0.3725781           | 0.9343377 |

Results, Y<sub>3</sub>:

|             | Col1        | Col2 (D)           | Col3 (D)                | Col4 (D)            | Col5 (D)  |
|-------------|-------------|--------------------|-------------------------|---------------------|-----------|
| User Header | User Row ID | Mean Squared Error | Root Mean Squared Error | Mean Absolute Error | R Squared |
| 1           |             | 0.0002465          | 0.0156998               | 0.0128906           | 0.9590472 |

## Step 8: Analysis of Covariance

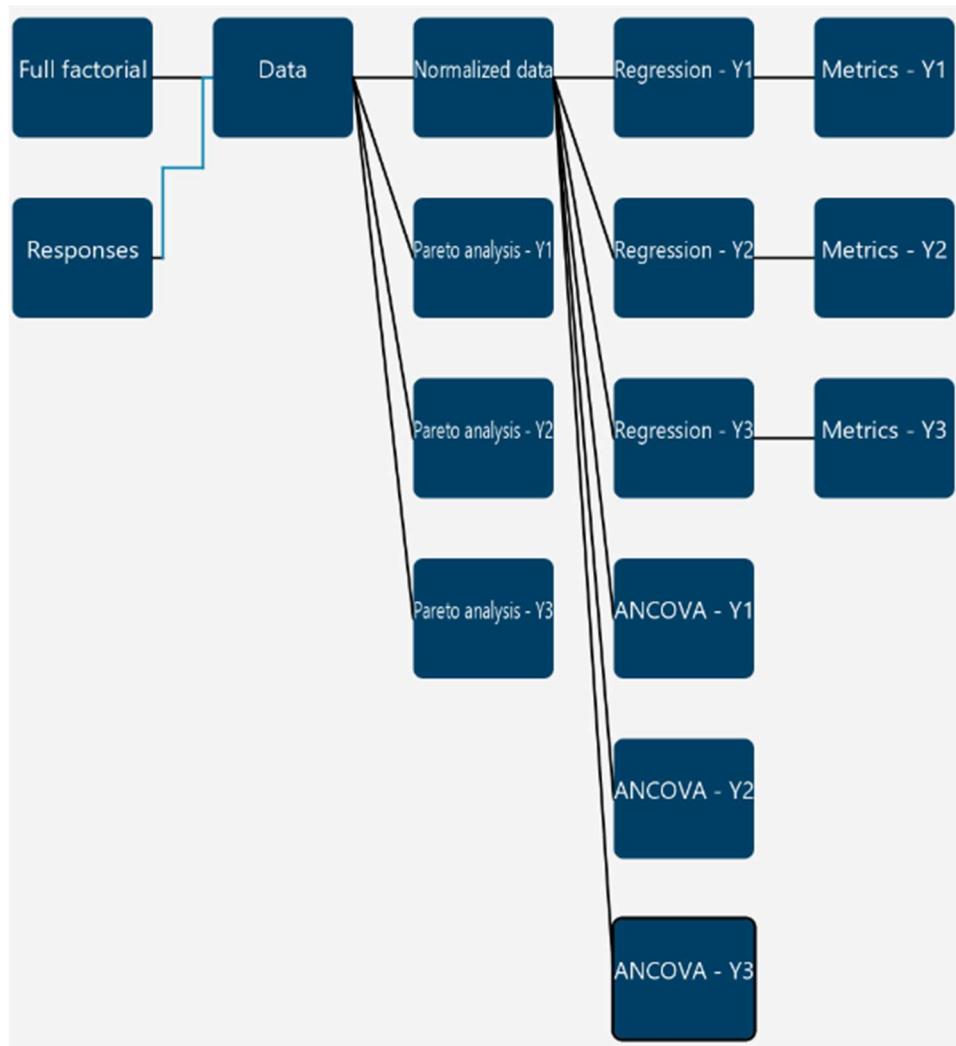
Create a new tab named “ANCOVA – Y1” and import the results from the spreadsheet “Normalized data”. Afterwards perform analysis of covariance for Y<sub>1</sub>: Statistics → Analysis of (Co)Variance → ANCOVA



Results:

|             | Col1        | Col2 (S) | Col3 (I) | Col4 (D)     | Col5 (D)    | Col6 (D)  | Col7 (D)  |
|-------------|-------------|----------|----------|--------------|-------------|-----------|-----------|
| User Header | User Row ID | Source   | DF       | Adj SS       | Adj MS      | F-Value   | P-Value   |
| 1           |             | X1       | 1        | 349.1370754  | 349.1370754 | 3.6950419 | 0.1029446 |
| 2           |             | X2       | 1        | 26.3094419   | 26.3094419  | 0.2784422 | 0.6166594 |
| 3           |             | X3       | 1        | 10.8727288   | 10.8727288  | 0.1150700 | 0.7460022 |
| 4           |             | X4       | 1        | 5.6712994    | 5.6712994   | 0.0600214 | 0.8146261 |
| 5           |             | X5       | 1        | 8.5908337    | 8.5908337   | 0.0909198 | 0.7731884 |
| 6           |             | X1*X2    | 1        | 629.8491065  | 629.8491065 | 6.6659172 | 0.0416661 |
| 7           |             | X1*X3    | 1        | 178.8303118  | 178.8303118 | 1.8926248 | 0.2180538 |
| 8           |             | X1*X4    | 1        | 53.6926979   | 53.6926979  | 0.5682489 | 0.4794826 |
| 9           |             | X1*X5    | 1        | 56.4109724   | 56.4109724  | 0.5970174 | 0.4690523 |
| 10          |             | X2*X3    | 1        | 369.9763741  | 369.9763741 | 3.9155916 | 0.0951840 |
| 11          |             | X2*X4    | 1        | 532.7659951  | 532.7659951 | 5.6384521 | 0.0551775 |
| 12          |             | X2*X5    | 1        | 9.6982576    | 9.6982576   | 0.1026401 | 0.7595478 |
| 13          |             | X3*X4    | 1        | 64.9681730   | 64.9681730  | 0.6875813 | 0.4387244 |
| 14          |             | X3*X5    | 1        | 56.4108662   | 56.4108662  | 0.5970163 | 0.4690527 |
| 15          |             | X4*X5    | 1        | 105.2377315  | 105.2377315 | 1.1137684 | 0.3318946 |
| 16          |             | X1*X2*X3 | 1        | 26.3094419   | 26.3094419  | 0.2784422 | 0.6166594 |
| 17          |             | X1*X2*X4 | 1        | 14.7990985   | 14.7990985  | 0.1566241 | 0.7059727 |
| 18          |             | X1*X2*X5 | 1        | 2.1477058    | 2.1477058   | 0.0227299 | 0.8851024 |
| 19          |             | X1*X3*X4 | 1        | 45.9408332   | 45.9408332  | 0.4862082 | 0.5117232 |
| 20          |             | X1*X3*X5 | 1        | 349.1368112  | 349.1368112 | 3.6950391 | 0.1029447 |
| 21          |             | X1*X4*X5 | 1        | 28.2221901   | 28.2221901  | 0.2986855 | 0.6044205 |
| 22          |             | X2*X3*X4 | 1        | 116.8151922  | 116.8151922 | 1.2362967 | 0.3087421 |
| 23          |             | X2*X3*X5 | 1        | 112.8889481  | 112.8889481 | 1.1947439 | 0.3163060 |
| 24          |             | X2*X4*X5 | 1        | 0.3020219    | 0.3020219   | 0.0031964 | 0.9567499 |
| 25          |             | X3*X4*X5 | 1        | 2.7181968    | 2.7181968   | 0.0287676 | 0.8708907 |
| 26          |             | Error    | 6        | 566.9279329  | 94.4879888  |           |           |
| 27          |             | Total    | 31       | 3724.6302380 |             |           |           |

Repeat this step for the rest of the response variables. Results, Y<sub>2</sub>:


|             | Col1        | Col2 (S) | Col3 (I) | Col4 (D)    | Col5 (D)   | Col6 (D)   | Col7 (D)  |
|-------------|-------------|----------|----------|-------------|------------|------------|-----------|
| User Header | User Row ID | Source   | DF       | Adj SS      | Adj MS     | F-Value    | P-Value   |
| 1           |             | X1       | 1        | 3.2067781   | 3.2067781  | 2.8772411  | 0.1407678 |
| 2           |             | X2       | 1        | 0.7719031   | 0.7719031  | 0.6925803  | 0.4371510 |
| 3           |             | X3       | 1        | 0.0116281   | 0.0116281  | 0.0104332  | 0.9219713 |
| 4           |             | X4       | 1        | 3.5845031   | 3.5845031  | 3.2161501  | 0.1230785 |
| 5           |             | X5       | 1        | 0.4875781   | 0.4875781  | 0.4374733  | 0.5329063 |
| 6           |             | X1*X2    | 1        | 53.1738281  | 53.1738281 | 47.7095446 | 0.0004552 |
| 7           |             | X1*X3    | 1        | 1.4154031   | 1.4154031  | 1.2699525  | 0.3028173 |
| 8           |             | X1*X4    | 1        | 0.5075281   | 0.5075281  | 0.4553732  | 0.5249297 |
| 9           |             | X1*X5    | 1        | 0.4209031   | 0.4209031  | 0.3776500  | 0.5614282 |
| 10          |             | X2*X3    | 1        | 6.7988281   | 6.7988281  | 6.1001625  | 0.0484675 |
| 11          |             | X2*X4    | 1        | 1.6974031   | 1.6974031  | 1.5229735  | 0.2633120 |
| 12          |             | X2*X5    | 1        | 0.0603781   | 0.0603781  | 0.0541735  | 0.8236905 |
| 13          |             | X3*X4    | 1        | 0.0225781   | 0.0225781  | 0.0202579  | 0.8914782 |
| 14          |             | X3*X5    | 1        | 0.4117781   | 0.4117781  | 0.3694627  | 0.5655783 |
| 15          |             | X4*X5    | 1        | 4.2267781   | 4.2267781  | 3.7924232  | 0.0994147 |
| 16          |             | X1*X2*X3 | 1        | 2.1166531   | 2.1166531  | 1.8991402  | 0.2173611 |
| 17          |             | X1*X2*X4 | 1        | 1.6790281   | 1.6790281  | 1.5064867  | 0.2656438 |
| 18          |             | X1*X2*X5 | 1        | 0.0069031   | 0.0069031  | 0.0061937  | 0.9398301 |
| 19          |             | X1*X3*X4 | 1        | 2.8740031   | 2.8740031  | 2.5786629  | 0.1594361 |
| 20          |             | X1*X3*X5 | 1        | 1.0117531   | 1.0117531  | 0.9077827  | 0.3774926 |
| 21          |             | X1*X4*X5 | 1        | 0.0331531   | 0.0331531  | 0.0297462  | 0.8687380 |
| 22          |             | X2*X3*X4 | 1        | 0.1845281   | 0.1845281  | 0.1655655  | 0.6982007 |
| 23          |             | X2*X3*X5 | 1        | 7.0970281   | 7.0970281  | 6.3677187  | 0.0450775 |
| 24          |             | X2*X4*X5 | 1        | 0.1092781   | 0.1092781  | 0.0980484  | 0.7647831 |
| 25          |             | X3*X4*X5 | 1        | 3.2448781   | 3.2448781  | 2.9114259  | 0.1388287 |
| 26          |             | Error    | 6        | 6.6871937   | 1.1145323  |            |           |
| 27          |             | Total    | 31       | 101.8421969 |            |            |           |

Results, Y<sub>3</sub>:

|             | Col1        | Col2 (S) | Col3 (I) | Col4 (D)  | Col5 (D)  | Col6 (D)   | Col7 (D)  |
|-------------|-------------|----------|----------|-----------|-----------|------------|-----------|
| User Header | User Row ID | Source   | DF       | Adj SS    | Adj MS    | F-Value    | P-Value   |
| 1           |             | X1       | 1        | 0.0722000 | 0.0722000 | 54.9223455 | 0.0003102 |
| 2           |             | X2       | 1        | 0.0066125 | 0.0066125 | 5.0301109  | 0.0660930 |
| 3           |             | X3       | 1        | 0.0120125 | 0.0120125 | 9.1378764  | 0.0233102 |
| 4           |             | X4       | 1        | 0.0264500 | 0.0264500 | 20.1204437 | 0.0041675 |
| 5           |             | X5       | 1        | 0.0036125 | 0.0036125 | 2.7480190  | 0.1484497 |
| 6           |             | X1*X2    | 1        | 0.0136125 | 0.0136125 | 10.3549921 | 0.0181848 |
| 7           |             | X1*X3    | 1        | 0.0006125 | 0.0006125 | 0.4659271  | 0.5203357 |
| 8           |             | X1*X4    | 1        | 0.0128000 | 0.0128000 | 9.7369255  | 0.0205743 |
| 9           |             | X1*X5    | 1        | 0.0036125 | 0.0036125 | 2.7480190  | 0.1484497 |
| 10          |             | X2*X3    | 1        | 0.0008000 | 0.0008000 | 0.6085578  | 0.4649829 |
| 11          |             | X2*X4    | 1        | 0.0003125 | 0.0003125 | 0.2377179  | 0.6431610 |
| 12          |             | X2*X5    | 1        | 0.0024500 | 0.0024500 | 1.8637084  | 0.2211672 |
| 13          |             | X3*X4    | 1        | 0.0078125 | 0.0078125 | 5.9429477  | 0.0506217 |
| 14          |             | X3*X5    | 1        | 0.0032000 | 0.0032000 | 2.4342314  | 0.1697311 |
| 15          |             | X4*X5    | 1        | 0.0078125 | 0.0078125 | 5.9429477  | 0.0506217 |
| 16          |             | X1*X2*X3 | 1        | 0.0024500 | 0.0024500 | 1.8637084  | 0.2211672 |
| 17          |             | X1*X2*X4 | 1        | 0.0021125 | 0.0021125 | 1.6069731  | 0.2518901 |
| 18          |             | X1*X2*X5 | 1        | 0.0012500 | 0.0012500 | 0.9508716  | 0.3671567 |
| 19          |             | X1*X3*X4 | 1        | 0.0006125 | 0.0006125 | 0.4659271  | 0.5203357 |
| 20          |             | X1*X3*X5 | 1        | 0.0000500 | 0.0000500 | 0.0380349  | 0.8518095 |
| 21          |             | X1*X4*X5 | 1        | 0.0003125 | 0.0003125 | 0.2377179  | 0.6431610 |
| 22          |             | X2*X3*X4 | 1        | 0.0012500 | 0.0012500 | 0.9508716  | 0.3671567 |
| 23          |             | X2*X3*X5 | 1        | 0.0021125 | 0.0021125 | 1.6069731  | 0.2518901 |
| 24          |             | X2*X4*X5 | 1        | 0.0004500 | 0.0004500 | 0.3423138  | 0.5798183 |
| 25          |             | X3*X4*X5 | 1        | 0.0002000 | 0.0002000 | 0.1521395  | 0.7099696 |
| 26          |             | Error    | 6        | 0.0078875 | 0.0013146 |            |           |
| 27          |             | Total    | 31       | 0.1926000 |           |            |           |

## Final Isalos Workflow

The final workflow is presented below:



## References

- (1) Sovány, T.; Csordás, K.; Kelemen, A.; Regdon, G.; Pintye-Hódi, K. Development of Pellets for Oral Lysozyme Delivery by Using a Quality by Design Approach. *Chemical Engineering Research and Design* **2016**, *106*, 92–100. <https://doi.org/10.1016/j.cherd.2015.11.022>.